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Abstract: The accurate diagnosis of neuroinflammatory (NIDs) and neurodegenerative (NDDs)
diseases and the stratification of patients into disease subgroups with distinct disease-related charac-
teristics that reflect the underlying pathology represents an unmet clinical need that is of particular
interest in the era of emerging disease-modifying therapies (DMT). Proper patient selection for clinical
trials and identifying those in the prodromal stages of the diseases or those at high risk will pave
the way for precision medicine approaches and halt neuroinflammation and/or neurodegenera-
tion in early stages where this is possible. Towards this direction, novel cerebrospinal fluid (CSF)
biomarker candidates were developed to reflect the diseased organ’s pathology better. Misfolded
protein accumulation, microglial activation, synaptic dysfunction, and finally, neuronal death are
some of the pathophysiological aspects captured by these biomarkers to support proper diagnosis
and screening. We also describe advances in the field of molecular biomarkers, including miRNAs
and extracellular nucleic acids known as cell-free DNA and mitochondrial DNA molecules. Here
we review the most important of these novel CSF biomarkers of NIDs and NDDs, focusing on their
involvement in disease development and emphasizing their ability to define homogeneous disease
phenotypes and track potential treatment outcomes that can be mirrored in the CSF compartment.
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1. Introduction

One hundred and thirty-one years since Heinrich Quincke carried out the first lumbar
puncture and attempted cerebrospinal fluid (CSF) cytological examination, significant progress
has been made in CSF analysis and diagnostics. Over the years, this “third circulation” or “the
vital spirit” has become a readily available and important means of diagnosing and studying
diseases affecting the nervous system with such accuracy that is considered—not unfairly—as
the “liquid biopsy” of the brain. Nowadays, successful scientific and technical efforts have
resulted in overcoming laboratory “barriers” in CSF analysis, such as the low concentrations
of diagnostically important molecules and the mixture of blood vs. brain-derived proteins in
the intrathecal compartment, rendering CSF analysis a powerful diagnostic tool at any time
an immune-inflammatory or a neurodegenerative disease is suspected [1].

With regard to autoimmune-demyelinating disorders, with multiple sclerosis (MS)
the major representative, CSF’s contribution to diagnosis has long been appreciated. The
recognition of “oligoclonal bands” (OBs)—known since the 1970s—along with the determi-
nation of intrathecal immunoglobulin synthesis is part of daily clinical practice [2]. The
fluid biomarker field in MS is developing rapidly reflecting unmet needs in three major
fields, that of diagnosis, progression of disability, and treatment outcomes. In this respect,
kappa (K) and lambda (L) free light chains (FLC) are emerging biomarkers for intrathecal
immunoglobulin synthesis, while neurofilaments (NF) are being investigated as biomarkers
of disease progression and response to therapy. However, additional biomarkers are needed
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to cover broader pathological processes (such as oligodendrocytes apoptosis, neuronal
death, remyelination, microglial activation, and neuroaxonal damage) to stratify MS pa-
tients into subgroups that reflect disease activity and disability accumulation, with the aim
of opening up new possibilities for timely targeted therapies. Autoantibodies (Abs), also
used as biomarkers for the diagnosis of recently recognized autoimmune disorders, have
been added to an ever-growing list of Abs responsible for autoimmune/paraneoplastic
encephalopathies, further advancing CSF diagnostics [3].

In the last 30 years, great advances have also been made in the field of biological mark-
ers of neurodegeneration, particularly in dementia-related disorders, mainly Alzheimer’s
disease (AD). Biomarker discovery has been based on the identification of proteins proven
to be closely associated with relevant biological processes, and cell or tissue pathologies.
The pathophysiology of AD, the most common form of dementia, involves the extracellular
aggregation of misfolded Aβ species, and the accumulation of tau proteins into the neurons,
leading to synaptic loss, axonal damage, neurodegeneration, and finally cell death. Estab-
lished CSF biomarkers already in use indicative of Aβ pathology are CSF Aβ42 and/or
Aβ42/Aβ40 ratio, while tangle-related pathology can be captured by measurement of CSF
phospho-tau protein (p-tau) levels. Biomarkers indicative of neurodegeneration in general,
include CSF total tau (t-tau), neurofilaments, and 14-3-3 protein, among others [4,5]. All
these biomarkers have been evaluated in the (A/T/N) classification system proposed by
the National Inst. on Aging and Alzheimer’s Association Research Framework [6]. How-
ever, additional biomarkers with molecular specificity are needed (such as alpha-synuclein,
TPD-43, and progranulin) to accurately diagnose other neurodegenerative and/or vascular
dementias, along with other nonspecific biomarkers of neurodegeneration. Moreover,
microRNA analysis and molecular biomarkers are continuously explored, expanding the
potential of CSF diagnostics.

The objective of the present study is not aspiring to be an exhaustive review of the
ever-growing literature but to highlight the most important substances having the potential
to emerge as novel CSF biomarkers tracking neurodegenerative and/or autoimmune-
inflammatory aspects of CNS diseases.

2. Biomarkers Tracking Inflammatory Aspects
2.1. Intrathecal Free Light Chain Synthesis

The most reliable biomarker for MS diagnosis is the presence of OBs that correspond to
immunoglobulins produced by plasma cells and are primarily identified in CSF, compared
to serum, indicative of their intrathecal synthesis. Antigens involved in the stimulation,
activation, and differentiation of B cells in antibody-secreting plasma cells in MS are largely
unknown [7]. The high clinical utility of OBs in MS is reflected by the incorporation of
this biomarker in the 2017 McDonald criteria [2]. However, they are not only used in daily
clinical practice as a diagnostic but also as a prognostic biomarker for future progression to
definite MS, especially in patients with clinically isolated syndrome (CIS) and radiologically
isolated syndrome (RIS), with a hazard ratio that reaches the value of 10 [8,9]. Nevertheless,
it lacks high specificity.

More in-depth knowledge of immunoglobulin biology reveals that light chains are
produced as either kappa or lambda isotypes during immunoglobulin synthesis, in ap-
proximately 20% excess over the heavy chains [10]. Finally, this plasma-cell “byproduct”
is secreted as kappa free light chains (KFLC) and lambda (LFLC) isotypes, respectively.
Excessive intrathecal IgG production, the most prominent immunological hallmark in MS,
eventually results in increased CSF FLC levels in MS, which is already known since the
1980s [11–13]. However, it was the development of automated nephelometric and turbito-
metric assays which made possible a reliable quantification of FLC and advocated their
diagnostic utility [14]. Particularly for KFLC analysis, encouraging results have shown high
sensitivity and specificity for CIS progression in clinically definite MS [13,15,16], making
this fully automated test to glare as a promising novel biomarker for quantitative intrathecal
IgG synthesis that could even replace technically demanding and rater-dependent OBs
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in MS [17]. Initial studies have shown that the KFLC index greater than 5.9 had a 96%
diagnostic sensitivity for MS [13]. Saadeh et al. [17] found that quantitative measurement
of CSF KCSF using a cutoff of 0.10 mg/dL is not significantly different from the perfor-
mance of positive OB testing (no serum coupling in this study). Indeed, KCSF (kappa free
light chain of cerebrospinal fluid) vs. OBs sensitivities were 78.6% for both (p > 0.99) and
specificities 87.1% vs. 89.4%, respectively [18].

Meanwhile, multiple attempts have been made for the optimal use of CSF and blood
KFLC levels alone or appropriately correlated with markers of blood–brain barrier (BBB)
functionality and a consensus regarding a reference range and cut-off values able to distin-
guish between patients and healthy population [14,19–24]. A more sophisticated, non-linear
approach that incorporates molecule diffusion and CSF flow rates for the identification of
KFLC intrathecal synthesis is needed. Towards this attempt, a theoretically and empirically
proposed hyperbolic function formula in correspondence to former schemes for IgG, IgM,
and IgA immunoglobulins was introduced in 2019 by Reiber et al. [25]. Although having
shown promising results in increasing specificity for MS diagnosis, further evaluation in
larger cohorts and multicenter studies is needed.

2.2. YKL-40

YKL-40, a glycoprotein, also known as chitinase 3-like protein 1, possesses an im-
portant role in the remodeling of the extracellular matrix and is closely related to the
inflammatory response observed in various cell types, such as synovial fibroblasts, chon-
drocytes, macrophages, and neutrophils [26,27]. In the CNS, YKL-40 is mostly expressed by
astrocytes but also by activated macrophages and microglia, especially under inflammatory
conditions [27,28]. A cross-talk between macrophages and astrocytes has been identified,
whereby macrophage-released cytokines cause astrocytes to produce YKL-40, which alters
their morphology and impairs their motility [28].

YKL-40 seems to be up-regulated in inflamed tissues and exhibits an altered expression
in neuroinflammatory diseases, mainly in MS. In brain specimens from MS patients, YKL-40
is expressed by numerous reactive astrocytes located in white matter plaques, and the
normal-appearing white matter (NAWM) [29]. Apart from astrocytes, YKL-40 was also
strongly expressed by CD68 + cells, a general macrophage/microglia marker, in white
matter plaques, NAWM, as well as perivascular spaces [30]. Importantly, YKL-40, found by
proteomic analysis of CSF samples, has been suggested as a useful biomarker for predicting
disease progression from CIS to classical relapsing-remitting MS (RRMS) [31]. CSF YKL-40
levels are predominantly increased in progressive compared to relapsing MS and are
associated with a higher risk of disability accumulation and correlated with MRI measures
indicative of spinal cord atrophy [32].

Regarding AD, it has been shown that the evolution of neuritic plaques is closely asso-
ciated with activated phagocytic microglia [33]. CSF YKL-40 levels are closely correlated
with CSF t-tau and p-tau levels, indicative of the role of YKL-40 in tracking the neuroinflam-
mation secondary to neurodegeneration [34]. A promising study showed that YKL-40 CSF
levels differed between prodromal and established AD [35]. Importantly, this biomarker
could be helpful in the prediction of the conversion of mild cognitive impairment (MCI)
to AD, especially in the presence of the APOE ε4 allele [36]. Another study confirmed
these results showing that the YKL-40 levels were increased in the CSF of MCI-AD patients
compared to those with stable MCI; therefore, authors suggested that this protein could
represent a potential prognostic biomarker for the progression of MCI to clinical AD [37].
Nevertheless, CSF YKL-40 could not discriminate well among AD from non-AD dementias,
e.g., dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). Among other
neurodegenerative diseases, higher levels of CSF YKL-40 have been shown in amyotrophic
lateral sclerosis (ALS) and sporadic Creutzfeldt–Jakob disease (CJD) patients compared to
healthy individuals [38,39]. Further studies are needed to better elucidate the role of YKL-40
as a CSF surrogate biomarker of neurodegeneration-related innate immunity activation in
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the pre-symptomatic/initial stages of AD continuum as well as in other neurodegenerative
diseases, possibly in combination with established AD biomarkers.

2.3. sTREM2

Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immunity
receptor expressed by microglial cells. Microglial activation leads to cleavage and produc-
tion of its fragment soluble TREM2 (sTREM2), which is then able to be measured in the
CSF, serving as a surrogate marker of microglial activity. In MS pathophysiology, Piccio
et al. [40] first described increased sTREM2 in CSF (assessed by enzyme-linked immunosor-
bent assay—ELISA) in active MS patients. In this study, CSF monocytes were found to
express TREM2, and it was highly expressed on myelin-laden macrophages in actively
demyelinated lesions from four autopsied MS patients. Towards this, the CSF levels of
sTREM2 showed significant correlations with inflammatory cytokines IL-8, granulocyte
colony-stimulating factor, and IL-5, supporting the role of microglial/macrophage acti-
vation in the inflammatory reactions during active disease stages [41]. sTREM2 levels
are also amenable to drug-related disease manipulation as treatment with natalizumab or
mitoxantrone normalizes CSF sTREM2 concentrations [42].

TREM2 gene mutations are of particular interest because they are associated with an
increase in the risk for AD, and especially those carrying the R47H genetic variant have
increased risk with Odds Ratios similar to those of APOE [43,44]. TREM2 risk variant
carriers have been shown to have higher levels of sTREM2 than controls and non-carriers.
Regarding early-stage AD, sTREM2 was associated with tau-related neurodegeneration
more consistently than with amyloid-β pathology [45,46]. The levels of CSF sTREM2
were significantly higher in AD patients compared to cognitively normal individuals and
displayed significant relationships with p-tau-181 and t-tau [40,47,48]. Nevertheless, other
studies showed no significant changes in levels of CSF sTREM2 between controls and AD
patients [49,50]. Suárez-Calvet et al. [45] measured sTREM2 levels across the AD spectrum
and found that CSF sTREM2 was lowest in controls and preclinical AD, peaked in MCI-AD,
and then declined slightly in AD dementia. CSF sTREM2 levels correlated better with
CSF t-tau and p-tau levels than Aβ42 levels, suggesting that elevated sTREM2 levels occur
later in the course of the AD process [51]. The most intriguing aspect is that sTREM2
captures microglial activation that closely relates to a disease stage-dependent fashion
in AD, with the highest levels in early symptomatic stages depicting signs of microglia
activation secondary to neuronal degeneration [45,46].

A recent study suggests a model in which Aβ and microglial activation as two partially
independent processes that, when acting synergistically, lead to neocortical tau pathology.
Pascoal et al. (2021), by using novel positron emission tomography (PET) brain imaging for
capturing microglial, amyloid, and tau pathology, found that microglia activation correlates
with tau pathology progression according to the stereotypical pattern of propagation of
tau tangles from the transentorhinal/entorhinal to sensorimotor cortices in AD (known
as Braak stages) [52]. CSF sTREM, correlated with [11C]PBR28 PET imaging (indicative
of microglial activation), suggesting that sTREM2 could be a novel marker for in vivo
microglia activation [52].

Other studies evaluating CSF sTREM2 have revealed increased levels in Parkinson’s
disease (PD) vs. controls that also correlated with CSF α-synuclein [53] as well as in
CHMP2B and GRN mutation carriers of FTD patients [54] and in CJD patients in whom
levels correlated with CSF t-tau, 14.3.3 protein and YKL-40 [55].

2.4. Soluble CD136 and CXCL13

sCD163, a marker of activated microglia and macrophages [56]; and CXCL13, necessary
for the development of B-cell follicles and secondary lymphoid structures, as a well-known
B-cell chemoattractant, produced mainly by follicular dendritic cells and possibly by
activated macrophages and microglial cells [57,58]; are promising CSF markers that are
under investigation for future use in MS diagnostics [59]. Especially, CSF CXCL13 levels
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were found to be increased in neuromyelitis optica (NMO) compared with MS patients and
were related to the NMO disease activity indicated by relapse rate and Expanded Disability
Status Scale (EDSS) scores [60].

2.5. IL-6

A hot topic in the era of fluid-based biomarkers is the identification of those able to
distinguish between NMO and MS patients. One potential candidate biomarker for such
differentiation is CSF IL-6 levels. IL-6 is a proinflammatory cytokine, mainly produced by
macrophages/monocytes and some activated B cells, and is considered a Th17 polarizing
cytokine, thus fostering subsequent autoantibody production [61,62]. NMO relapses are
associated with highly increased IL-6 levels vs. MS patients. Importantly, IL-6 correlates
with various clinical parameters of NMO, such as the length of myelitis and disease severity
scores, particularly in drug-naive patients, while it correlates with markers of glial damage,
such as glial fibrillary acidic protein [63–66].

Other potential CSF biomarkers discriminating MS from NMO are CSF complement
components (e.g., C5a and sC5b-9) as well as Th2 and Th17-related cytokines/chemokines
(e.g., IL-17, IL-13) [67,68]. Most of them have been analyzed in only a few studies, and
further validation is required. Finally, regarding discrimination between myelin oligoden-
drocyte glycoprotein antibody disease (MOGAD) and NMO, which share a lot of common
pathways, CSF biomarker(s) are still lacking.

2.6. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2)

Monocyte chemoattractant protein-1 (MCP-1) is an important chemokine for the
recruitment of monocytes and macrophages to the CNS through its interaction with its
receptor CCR2. Tissue macrophages and microglia cells in active white matter lesions of MS
patients have been found to overexpress CCR2. CCL2 expression was defined as activated
astrocytes, pointing to their role as active players in orchestrating the inflammatory milieu
in MS white matter lesions [69,70]. MCP-1/CCL2 levels in MS have been found to be
decreased in the CSF, especially during active disease stages, and correlated with indices of
intrathecal IgG production and CSF levels of neurofilament light protein (NFL) [71].

MCP-1 has been also reported significantly increased in prodromal AD compared
to healthy controls and correlated with a short time interval to cognitive decline and
development of dementia. In combination with CSF Aβ42 and t-tau and p-tau protein
levels, it may be a potentially useful biomarker for monitoring disease progression [72].

2.7. Glial Fibrillary Acidic Protein (Astrogliosis Marker)

Glial fibrillary acidic protein (GFAP) is a cytoskeletal protein expressed by mature
astrocytes and is widely used as a cell type marker in brain histopathology [73]. Increased
CSF GFAP levels in MS are predictive of disability reached 8–10 years later [74]. Reactive
astrocytes have been found to overexpress GFAP in the plaques of MS patients [75,76].
Patients with secondary progressive MS (SPMS) displayed higher CSF GFAP levels than
those with RRMS [77]. Additionally, higher GFAP CSF levels were associated with poor
ambulation and greater disabilities in MS [77,78].

GFAP, when measured in CSF, exhibited higher values in patients with NMO spectrum
disorders (NMOSD) when compared to patients with MS or healthy controls [79–85]. S100B
protein, another marker of astrocytic damage, showed a similar trend but with less statistical
strength [80]. Other studies have demonstrated that the values of GFAP and S100B are
lower in seronegative patients when compared to AQP4-IgG-positive NMOSD patients [82].
As a marker that discriminates between NMOSD and MS, the increase in GFAP values
was proposed to be a supportive criterion for NMOSD diagnosis [86]. However, the utility
of GFAP and S100B protein in discriminating among MOGAD, AQP4-IgG NMOSD, and
double seronegative patients was not consistent according to the few studies which tried to
address this issue [80,82].
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The above-mentioned novel CSF biomarkers capturing inflammatory aspects either in
autoimmune or neurodegenerative neurological diseases affecting CNS are summarized in
Table 1 and depicted in Figure 1.

Table 1. CSF-based biomarkers tracking neuroinflammation.

Biomarker Specific Biological Process Neurodegenerative
Diseases

Neuroinflammatory
Diseases

Methodology
(Most Used)

KFLC Intrathecal immunoglobulin synthesis N/A MS, CIS Nephelometry
YKL-40 Glial activation AD, ALS, CJD, FTD RRMS, CIS, NMO Elisa
sTREM2 Glial activation AD, PD, FTD, CJD MS Elisa

sCD163 Activated microglia and
tissue macrophages Not studied MS Elisa

CXCL13 B-cell activation and recruitment to CNS Not studied RRMS, CIS, NMO Elisa
IL-6 Th2 and Th17-related inflammation Not studied NMO Elisa

MCP-1/CCL2 Glial activation, monocyte recruitment AD MS (reduced) Elisa

GFAP Glial activation (astrocytes) AD SPMS > RPMS,
NMO Elisa

Abbreviations: KFLC: kappa free light chains, YKL-40: also known as chitinase-3-like protein 1 (CHI3L1): a
40 kD chitin binding protein with a YKL domain. TREM2: triggering receptor expressed on myeloid cells 2,
sCD163; soluble cluster of differentiation 163, CXCL13; chemokine (C-X-C motif) ligand 13, IL-6; interleuκin
6, MCP-1/CCL2; Monocyte chemoattractant protein-1, GFAP; Glial fibrillary acidic protein, AD; Alzheimer’s
disease, FTD, frontotemporal dementia, PD; Parkinson’s disease, CJD; Creutzfeldt–Jakob disease, MS; multiple
sclerosis, SPMS; secondary progressive multiple sclerosis; RRMS; relapsing-remitting multiple sclerosis, CIS;
clinically isolated syndrome, NMO; neuromyelitis optica.
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with both qualitative and quantitative differences. Liquid-based biopsies in the CSF compartment that
more closely resemble brain pathology, as it is in close proximity to the tissue, aim to unravel novel
players in disease pathogenesis. In neuroinflammatory diseases such as MS, novel biomarkers reflect
markers of oligodendrocyte death (circulating oligodendrocyte derived cell-free DNA), ongoing
B cell activation and plasma cell maturation in the CNS (KFLC production, CXCL13 production),
and overt microglial activation (YKL-40; sTREM2 release). In neurodegenerative diseases, various
aggregated proteins (TDP43, tau, amyloid) characterize different clinical syndromes and can be
captured with novel highly sensitive technical assays such as protein misfolding amplification assays
and SiMoA. Moreover, low-grade inflammation, possibly initiated by misfolded and aggregated
proteins (and vice-versa), is currently recognized, and known neuroinflammatory markers are also
of clinical utility (YKL-40; s-TREM2, MCP-1). Other critical pathways in neurodegeneration, such
as axonal damage and synaptic transmission compromise, are also captured by novel biomarkers
such as neurofilaments and presynaptic proteins (SNAP25, GAP-43), respectively. Moreover, complex
biomarkers such as progranulin, that apart from being a neuronal protein involved in neuritic growth,
axonal transport, and synaptic function is also involved in controlling microglial activation, are
becoming closer to clinical practice because they display abnormalities in core biological processes of
relevant diseases. Cellular localization and cell of origin for displayed biomarkers can be visualized
in the image. Not all tissue sources are displayed for simplicity reasons. Abbreviations: VLP-1;
visinin-like protein 1, NF-L; neurofilament light, SNAP-25; synaptosomal associated protein 25,
GAP-43; growth-associated protein 43, Ab1–42; the 42 amino acid form amyloid b, TDP-43; TAR
DNA-binding protein 43, TREM2; Triggering receptor expressed on myeloid cells 2, YKL-40; also
known as chitinase-3-like protein 1 (CHI3L1), a 40 kD chitin-binding protein with a YKL domain,
MCP-1/CCL2; Monocyte chemoattract-ant protein-1, GFAP; glial fibrillary acidic protein, KFLC; CSF
kappa free light chains, miRNA; micro-RNA, cf-DNA; cell-free DNA, CXCL13; chemokine (C-X-C
motif) ligand 13, FDC; follicular dendritic cell, Aβ; amyloid-β, BACE; beta-site amyloid precursor
protein cleaving enzyme, sAPP; secreted amyloid precursor protein.

3. Biomarkers Tracking Neurodegenerative Aspects
3.1. Neurofilament Light Chain

Neurofilaments are the major cytoskeletal proteins of neurons in both CNS and PNS,
comprising light (NFL), medium, and heavy (NFH) neurofilament chains [87]. The most
promising biomarker is light-chain NF, a native cytoskeletal protein, which is released into
the CSF when axons are damaged, and thus it has been used as a biomarker of neuronal
injury and neurodegeneration [88].

Intensive research over the past decades showed that in all clinical forms of MS,
increased CSF NFL concentration reflects disease activity and progression [89]. CSF NFL
levels correlate positively with serum levels, rendering blood an ideal mean for monitoring.
Patients with relapse or with radiologic activity display significantly higher serum NFL
levels than those in remission, and importantly, effective disease-modifying treatments,
reduce NFL levels [90]. CSF NFL levels also have a predictive value for new or enlarging
T2 lesions, brain volume loss, and risk of disability worsening [91]. CSF NFL levels and
OBs were found to be independent risk factors for fostering the development of CIS and
clinically definite MS in RIS syndrome [9].

Increased levels of NFL have been found in other neuroinflammatory conditions, such
as MOGAD [92,93]. We recently showed that NFL is significantly increased in patients with
paraneoplastic form autoimmune encephalitis. CSF-NFL levels with a cut-off value of 969
pg/mL had a sensitivity and specificity of 100% and 76.19%, respectively, regarding the
detection of underlying malignancies [92,93].

Widespread axonal injury is a prominent feature of NMO pathophysiology, compared
to MS, with optic nerves and spinal cord being severely affected. Initially, high CSF levels of
NF heavy subunit (NFH) in NMO patients but not in MS patients had been shown [94,95].
Subsequent studies assessed CSF NF light subunit (NFL) levels in NMO patients which
were found higher compared to MS, and other non-inflammatory neurological diseases pa-
tients. Importantly, NMO patients with increased CSF NFL levels during relapse displayed
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increased disability, a notion highlighting the role of NFL in capturing disease severity [96].
CSF NFL correlated with clinical and radiological aspects of disease severity, but were not
able to discriminate NMO from MS [28,96].

Several studies have also found that CSF NFLs levels may be a marker of clinical
severity of AD and MCI when compared to Aβ and tau proteins, reflecting future cognitive
decline. Nevertheless, NFLs are not a specific marker for AD pathophysiology, as they
are also found increased in other neurodegenerative diseases, while they normally also
increase with age [97,98].

In movement disorders, such as PD-plus syndromes, NFLs show a good discriminatory
power for the differentiation of PD, DLB, and PD dementia (PDD) but not multiple system
atrophy (MSA). Scientific efforts for the inclusion of CSF NFL determination in the diagnos-
tics of ALS are currently in progress [99–102]. Moreover, NFLs have been suggested as a
prescreening tool for suspected CJD cases as an alternative to t-tau or 14-3-3 levels [103].

3.2. VILIP-1

VILIP-1, visinin-like protein 1, belongs to a family of proteins that are neuronal cal-
cium sensors (NCS) and is highly expressed predominantly in neurons from pyramidal
and non-pyramidal areas in AD brains [104]. VILIP-1 is associated with cardinal patho-
logic hallmarks of AD, as found placed close to dystrophic nerve cell processes, neuritic
plaques, and fibrillar tangles [105]. The neurotoxic effects of VILIP-1 have been attributed
to perturbations of Ca2+ homeostasis in AD and thus serve as a marker of neuronal in-
jury [106]. Regarding CSF, elevated VILIP-1 levels have been reported in AD and MCI
patients as compared to controls, while they were found to be strongly correlated with
p-tau 181 and t-tau levels [107]. A recent meta-analysis showed that CSF VILIP-1 levels in
AD are significantly higher compared to healthy individuals but not in those with MCI or
DLB [108]. Furthermore, CSF VILIP-1 levels were significantly higher in patients with MCI
who progressed to AD in comparison to those with stable MCI; however, the restricted
number of studies does not allow clear conclusions. Interestingly, CSF levels of VILIP-1
are associated with the rate of brain atrophy in AD, while the ratio of VILIP-1/Aβ-42
significantly correlates with the brain amyloid load [109,110]. Therefore, VILIP-1 together
with Aβ42 could be used for predicting the future rate of cognitive decline.

No solid evidence exists for the role of this biomarker in neuroinflammatory diseases.

3.3. Ubiquitin C-Terminal Hydrolase L1

CSF ubiquitin C-terminal hydrolase L1 (UCH-L1), a protein involved in the mainte-
nance of axonal integrity, is involved in the pathway leading to the degradation of highly
ubiquitinylated aggregated and/or damaged proteins by the 26S ubiquitin–proteasome sys-
tem (UPS) [111,112]. UCH-L1 has been found to be increased predominantly in AD patients
vs. controls or patients with other dementias and patients with MCI. It has been suggested
that UCH-L1 might be implicated in AD pathophysiology through its interplay with the
tau protein [113,114]. Towards this, CSF UCH-L1 positively correlated with CSF p-tau
and neuron-specific enolase, a marker of neurodegeneration [115]. Moreover, a proteome
analysis in CSF samples of ALS and FTD patients carrying C9orf72 gene mutation showed
that UCHL1 was among the most highly upregulated proteins in ALS patients [116]. No
significant changes in CSF- UCH-L1 levels have been found in MS patients compared to
controls [117].

4. Biomarkers Tracking Synaptic Pathology
4.1. Neurogranin

Neurogranin (Ng) is a calmodulin-binding postsynaptic protein playing a role in
synaptic plasticity. Reduced protein expression of Ng has been described in the brains of
AD patients but was found conversely increased in the CSF. The most important finding
with clinical applications is high CSF levels of Ng reported in MCI patients progressing to
AD compared to cognitively stable MCI patients and control individuals, making CSF Ng
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a surrogate biomarker for identifying patients in early disease stages [118–120]. Indeed,
highly sensitive new ELISA assays have revealed high levels of Ng in CSF, in AD, and MCI-
AD. CSF Ng levels predict conversion from MCI to AD and are associated with a faster rate
of cognitive decline within amyloid-positive MCI patients [119]. A cut-off at 382 pg/mL
of CSF Ng levels was found to correlate with the future rates of hippocampal atrophy as
measured by MRI and rates of decrease in cortical glucose metabolism illustrated by FDG-
PET. CSF Ng has also been correlated with many aspects of AD pathology, both with known
biochemical changes in CSF t-tau and Aβ42 levels, as well as with tissue abnormalities such
as the deposition of tau neurofibrillary deposits and β-amyloid plaques [121]. Moreover,
other studies have shown that Ng could be a disease-specific biomarker as its levels were
found to be elevated exclusively in patients with AD, but not in other neurodegenerative
disorders, such as FTD, LBD, PD, progressive supranuclear palsy (PSP), or multiple system
atrophy (MSA), with the only exception of a speech variant of FTD (svFTD = semantic
variant of FTD) [120].

4.2. SNAP-25

SNAP-25 is a component of the SNARE complex, which is central to synaptic vesicle
exocytosis, and by directly interacting with different calcium channels subunits, it nega-
tively modulates neuronal voltage-gated calcium channels, thus regulating intracellular
calcium dynamics. [122,123]. A recent study showed that CSF SNAP-25 concentrations
were elevated in AD and CJD patients but not in other diseases such as PD spectrum, FTD,
and ALS [124]. Moreover, SNAP-25 CSF levels correlated with higher Aβ load (as measured
by CSF Aβ42/40 and Aβ PET Centiloid values) and were found higher in APOE ε4 carriers
implying its role in relation to amyloid pathology in the AD continuum [125,126]. Another
study found that CSF SNAP-25 levels were higher in patients suffering from MCI who were
amyloid-β-positive compared to cognitively normal individuals (amyloid-β-positive or
-negative). Therefore, the use of this marker in preclinical AD deserves further evaluation,
whereas it could represent a useful diagnostic and prognostic biomarker for the earliest
symptomatic stage of AD [127,128].

4.3. GAP-43

GAP-43 is a presynaptic protein expressed in various brain regions (hippocampus,
entorhinal cortex, neocortex, and olfactory bulb) and is critically involved in synapto-
genesis and neuronal plasticity in the adult brain [129]. CSF GAP-43 levels have been
found to be increased in preclinical AD and, along with high CSF, Ng levels were asso-
ciated with increased brain metabolism but lower cortical thickness in AD-related brain
regions [126,130,131]. Moreover, high CSF GAP-43 levels were closely associated with MCI
progression to dementia over a median of four years’ follow-up, while its levels correlated
with CSF p-Tau181, suggesting a role of tau aggregations in presynaptic dysfunction [132].
CSF levels of GAP-43 have been measured in MS but with contradictory results [133,134].

The above-mentioned novel CSF biomarkers capturing neurodegenerative aspects
as well as synaptic pathology either in autoimmune or neurodegenerative neurological
diseases affecting CNS are summarized in Table 2 and depicted in Figure 1.
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Table 2. CSF-based biomarkers tracking neurodegeneration and synaptic pathology.

Biomarker Specific Biological Process Neurodegenerative
Diseases Neuroinflammatory Diseases Methodology

(Most Used)

NF-L Axonal dysfunction AD, FTD, VaD, CJD,
ALS, PSP, MSA, CBD

RRMS, SPMS,
PPMS, CIS, NMO, MOGAD ELISA

VILIP-1 Axonal dysfunction AD Not studied ELISA
UCH-L1 Axonal dysfunction AD No difference ELISA

Neurogranin Synaptic degeneration AD Not studied ELISA, mass
spectrometry

SNAP-25 Synaptic degeneration AD not studied ELISA, mass
spectrometry, SiMoA

GAP-43 Synaptic degeneration AD contradictory results ELISA

Abbreviations: NF-L: neurofilament light, VILP-1: visinin-like protein 1, UCH-L1: ubiquitin C-terminal hydrolase
L1; SNAP-25; synaptosomal associated protein 25, GAP-43; growth-associated protein 43, AD; Alzheimer’s
disease, FTD; frontotemporal dementia, PD; Parkinson’s disease; VaD; vascular dementia; CJD; Creutzfeldt–Jakob
disease, PSP; progressive supranuclear palsy, MSA; multiple system atrophy, CBD; corticobasal degeneration,
DLB; dementia with Lewy bodies, ALS; amyotrophic lateral sclerosis, MS; multiple sclerosis, SPMS; secondary
progressive multiple sclerosis, RRMS; relapsing-remitting multiple sclerosis, PPMS; primary progressive MS, CIS;
clinically isolated syndrome, NMO; neuromyelitis optica, MOGAD; anti-myelin oligodendrocyte glycoprotein
antibodies associated disorders, SiMoA; single molecule array.

5. Biomarkers Tracking Disease-Specific Proteins
5.1. Alpha-Synuclein

Alpha-synuclein (α-Syn) is a neuronal protein that regulates synaptic vesicle trafficking
and subsequent neurotransmitter release. It is the major constituent of Lewy bodies the
pathogenic hallmark of PD and DLB, as well as in variable aggregated species in MSA,
disorders collectively called synucleinopathies. A-Syn is readily secreted into extracellular
space and can be found in different forms (monomeric, oligomeric, and seeding-competent
aggregated forms) in CSF. Quantification of total α-Syn levels in CSF in multiple studies
has shown a general trend of decreased α-Syn levels in patients with PD compared to
healthy individuals. Interestingly, a recent study of our group showed that in general
synucleinopathies exhibit lower total-α-Syn and higher phosphoS129-α-syn/total-α-Syn
ratios compared to tauopathies [135].

A major limitation in measuring CSF α-Syn levels is the possible contamination by
red blood cells, which is a big source of the protein and gives false-positive results [136].
The use of specific assays designed to amplify and detect very low amounts of aggregated
α-Syn in biological samples, collectively termed as α-Syn seed amplification assays (SAAs),
e.g., real-time quaking-induced conversion (RT-QuIC) and protein-misfolding cyclic am-
plification (PMCA), have promisingly shown the presence of seeding-competent α-Syn
species in CSF, which could serve as a more accurate and reliable biomarker for PD and
other synucleinopathies. Particularly high diagnostic performances of α-Syn SAAs mea-
sured in CSF, differentiating synucleinopathies from non-synuclein-related parkinsonism
have been presented in different studies. PD could be discriminated from PSP, CBD with
sensitivities that vary from 91 to 94% and sensitivities that reach 100% [137,138]. The
discrimination between PD and MSA is more difficult as different conformational species
of aggregated a-synuclein are involved in disease pathogenesis. Recently published studies
have assessed the diagnostic value of CSF α-Syn seed quantification in diagnosis and
differentiation among synucleinopathies. A-syn RT-QuIC could discriminate PD from MSA
with a sensitivity of 75% based on quantitative characteristics of the assay (T50 and Vmax).
Importantly, specific RT-QuIC parameters correlated with worse clinical progression of
patients diagnosed with MSA but not PD [139].

5.2. TAR DNA-Binding Protein of 43kDa (TDP-43)

Frontotemporal lobar degenerations (FTLDs) comprise a spectrum of complex and
heterogeneous neurodegenerative disorders characterized by degeneration of the frontal
and anterior temporal lobes involving multiple clinical phenotypes, different protein



Diagnostics 2023, 13, 73 11 of 26

aggregates (tau, TDP-43, fused in sarcoma protein-FUS) in tissue pathology and many
genetic loci explaining up to 40% of familial FTLD [140]. The most intriguing aspect is that
there is variability and overlapping in clinical, genetic, and histopathologic features, making
it difficult to identify a unique biomarker signature [141,142]. TDP-43, encoded by the
TARDBP gene, is the major aggregated protein involved in the formation of the characteristic
inclusions, especially in its hyperphosphorylated and ubiquitin-bound form, in the brains
of patients with ubiquitin-positive frontotemporal lobar degeneration (FTLD-U) and or
ALS [141]. More than 50 mutations in the TARDBP gene have been identified across the
FTD/ALS spectrum [143,144].

About 50% of FTLDs have positive TDP-43 aggregates, thus rendering TDP-43 an
emerging disease-specific biological marker for the FTD/ALS spectrum [145]. Recently, it
has been reported that TDP-43 levels in CSF were higher in patients with FTD and ALS
than in controls, using Western blot along with chemiluminescence assays [146], while
similar results were obtained by measuring TDP-43 in the CSF of patients with early-stage
ALS using the ELISA technique [147,148]. Work from our lab has recently shown that
CSF TDP-43 combined with tau proteins in the TDP-43 × t-tau/p-tau formula has good
sensitivity and specificity for the discrimination of ALS-FTD spectrum disorders from
controls [149–151].

Plasma levels of phosphorylated TDP-43 protein have been also associated with the
presence of histopathological lesions of FTLD [152]. It seems, therefore, appropriate to
intensify research efforts in broadening the classification system of dementias so that the
diagnostic “arsenal” in the coming years will be enriched with further biological markers
and the AT(N) system will evolve into ATT(N), where the second T corresponds to the
TDP-43 proteinopathy [6].

5.3. Progranulin

The protein progranulin (PGRN) is the product of the GRN gene, a cysteine-rich pro-
tein that is glycosylated and secreted as a glycoprotein [153]. The structure of PGRN allows
it to be broken down, by several proteases, into approximately seven ∼6 kDa granulins
(GRNs) and a para-GRN of 3.5 kDa, consisting of 12 cysteine repeat motifs [154]. PGRN is
a pleiotropic protein and the properties of the full-length protein are distinct from those of
granulins. PGRN is considered to be a growth factor, especially for neurons, and important
for their survival and outgrowth, whereas some GRNs have inflammatory properties [155].
Progranulin, which is also expressed in microglia, exerts a negative effect on neuroinflam-
matory processes, such as microgliosis and astrogliosis, and is also involved in repair
mechanisms after axonal injury [156]. Moreover, PGRN also found in late endosomes and
lysosomes, is associated with the maintenance of lysosome homeostasis, further supported
by the finding that PGRN haploinsufficiency causes lysosome dysfunction [157–159].

Most attention has been given to PGRN due to the loss-of-function mutations in
the progranulin gene (GRN) that have a pathogenic role in familial forms of FTD [160].
Pathogenic mutations of the GRN gene account for 20% of familial and 5% of sporadic
cases of FTD, with variation in clinical expression, mainly expressed as primary progressive
aphasia (PPA) and bvFTD (a behavioral variant of FTD), but rare phenotypes resembling
AD and parkinsonism have also been reported [161,162]. At the neuropathology level, GRN
mutations, in contrast to those of MAPT gene encoding tau, are associated with FTLD-TDP
proteinopathy [163]. CSF progranulin has also been found to be decreased in the CSF and
plasma of mutation carriers but is less extensively studied and a relatively weak correlation
has been observed between CSF and blood [150,164,165]. CSF progranulin levels were
found to be reduced not only to the rare cases of genetic GRN-FTD but also to the more
common GRN-negative cases of FTD. Nevertheless, specific cut-offs are not available to
precisely discriminate among carriers and non-carriers in order to avoid the high cost of
genetic screening in FTD patients for the identification of GRN mutations [166].

Previous studies had reported no differences in CSF progranulin levels among AD,
MCI, and controls [167]. Recently it was found that CSF levels of progranulin increase as
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early as ten years before the clinical presentation of the disease in patients with familial
AD; thus, progranulin could represent a possible marker for early prediction of the disease
onset. Higher CSF PGRN was linked to more advanced disease stages and cognitive decline
in late-onset AD [51,155]. Nevertheless, it is not absolutely specific to AD and has been
found to be deregulated in non-AD diseases as well.

As regards MS patients, CSF levels of PGRN had shown contradictory results. A recent
study has unraveled minor only perturbations of this biomarker in CSF of patients with
different clinical forms of MS [168]. Interestingly, RIS patients exhibited higher median
CSF PGRN levels than healthy controls and showed no significant differences compared
with CIS, RRMS, and PPMS cases [169,170]. The field of research in progranulin biology is
promising, considering the ability of progranulin and/or granulins to capture treatment
response in the era of trials of GRN-targeted therapies.

6. Molecular Biomarkers
6.1. MicroRNAs

MicroRNAs (miRNAs), are single-stranded 19–23 nucleotides long, nonprotein-coding
RNA molecules that act as post-transcriptional regulators to fine-tune protein expression
levels either by promoting mRNA degradation or by diminishing protein translation.
miRNAs are secreted from cells to extracellular spaces through vehicle mediated (e.g.,
exosomes, microvesicles, apoptotic bodies) and not-vehicle-mediated pathways (bound
with high-density lipoproteins and Ago2 proteins) [171]. A valuable source of circulating
miRNAs is the CSF, and new studies are focusing on it for novel biomarkers discovery.

In MS, miRNAs could be a very useful and informative tool because it includes and
transports material outside the cell originating from many cell types. This is the feature
that renders miRNAs an important surrogate biomarker providing information on elusive
cells and difficult-to-access tissues [172]. Various miRNAs have been recently described
with perturbed expression in CSF of MS patients (miR-181c; miR-150; miR-328; miR-34c-5p;
miR-142-3p; miR-let-7b-5p) with miR-181c and miR-150 to be associated with an earlier
conversion of CIS to MS [173–177]. Importantly, a recent study showed that specific miRNA
in CSF of MS patients could differentiate patients in remission from those in relapse.
Additionally, they are associated with the extent of intrathecal inflammation, and they are
involved in the cell cycle, immunoregulation, and neurogenesis [178]. The implication of
CSF miRNAs in important aspects of MS pathophysiology and especially during relapse
stages was also supported by another study that found that the immune-related pathways
controlled by these differentially expressed miRNAs are involved in the activation of T and
B cells, as well as cytokine and chemokine signaling such as transforming growth factor
beta (TGF-β) [179].

Regarding AD pathogenesis, miRNAs have been shown to target molecular pathways
associated with pathologic processes that are implicated in disease evolution, such as
synaptic and mitochondrial dysfunction, Aβ accumulation, and tau toxicity. In 2013 Sala
Frigerio et al. [180] by applying qRT-PCR (real-time quantitative PCR) in CSF samples
showed diminished levels of miR-27a-3p in AD patients, which were associated with
classical CSF AD-related biomarkers levels of tau and β-amyloid). Burgos et al. [181],
by using next-generation sequencing, profiled the miRNA content from 69 patients with
Alzheimer’s disease, 67 with Parkinson’s disease, and 78 neurologically controls in both
serum and CSF. Importantly, they noticed that miRNAs present in the CSF differentiate
patients quite more effectively than miRNAs in serum. Specifically, miR-101 was found to
be reduced in CSF and correlated with the presence of neurofibrillary tangles and plaque
density. miRNA-9 was also downregulated in CSF from AD patients, and its expression
levels changed dynamically across Braak stages. Kiko et al. [182] indicated that miR-29a
and miR-29b levels were higher, and miR- 34a, miR-125b, and miR-146a levels were lowered
in the CSF samples of AD patients. Among the various miRNAs studied by Muller et al.
2016, only miR-29a increased by a factor of 2.2 in CSF samples of AD patients [183]. Finally,
miR-29c-3p, miR15a-5p, and let-7i-5p were found as three differential expressed miRNAs
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in CSF of AD patients that could all be related to AD relevant targets such as APP (amyloid
precursor protein) and BACE1 (Beta-secretase 1), implying that miRNA is actively involved
in key pathogenetic AD processes [184].

Apart from AD, the application of miRNA as a potential biomarker has been tested
in many other neurodegenerative diseases. miR-9-3p and miR-106b-5p levels in CSF have
been found capable of discriminating PD from MSA patients with good diagnostic accuracy
by receiver operating characteristics curve evaluation (area under the curve = 0.73). In the
same study, a single microRNA, miR-106b-5p, provided the best discrimination between
PD and PSP (area under the curve = 0.85) in the CSF [185].

De Felice et al. suggested that miR-338-3P, which is found in both blood and CSF,
could be used as a biomarker for patients with ALS. They have shown that miR-338-3p is
highly expressed in ALS tissues by in situ hybridization staining and that was specifically
localized in the grey matter of spinal cord tissues from sALS autopsied patients [186].

The limitations in the wide use of miRNAs mainly rely on the high cost of the tech-
niques applied for their measurement, the need for bioinformatic tools for analyzing
complex networks in which they are involved, the variability in levels (depending on
gender, aging, comorbidities), and the need for universal clear-cut off levels that require
standardized protocols.

6.2. Cell-Free DNA (Genomic and Mitochondrial Origin)

Cell-free DNA (cfDNA) constitutes externalized, short, fragmented DNA in various
lengths found in bodily fluids and is the product of either programmed cell death, necrosis,
or cell activation [187]. A breakthrough in the so-called “liquid biopsy” research area is
the identification of CSF-derived cell-free DNA that captures mosaic somatic mutations in
malignant brain tumors [188–190]. Regarding non-malignant neurodegenerative diseases,
somatic mutations have been recently described in AD brain specimens and were found
enriched in PI3K-AKT, MAPK, and AMPK pathway genes known to contribute to hyper-
phosphorylation of tau. Importantly, pathogenic brain somatic mutation in PIN1 leads to a
loss-of-function mutation. Nevertheless, the use of these genetic alterations as diagnostic
biomarkers has not been assessed in bigger cohorts and has not been validated yet.

The role of cfDNA in AD has emerged in the last years. DNA methylation has been
shown to be altered in various tissues and brain areas of AD patients. Other genes have been
found hypermethylated (APP, trem2, ank1) and other hypomethylated (PINI1) [191]. Highly
methylated neuronal tissue-specific LHX2 gene was found to be increased in the plasma
cfDNA of patients with AD, particularly at the early stage of the disease [192]. Recently,
significant genome-wide methylation changes in circulating cfDNA from AD subjects along
with artificial intelligence platforms revealed deregulated methylation profiles in genes
epigenetically altered in AD associated with synaptic activity, neuronal stemness, and
age-dependent neurodegeneration [193].

Methylation analysis patterns in cfDNA have gained much attention as they provide
information on the tissue of origin. In a pioneer study by Lehmann-Werman and colleagues
in 2016, oligodendrocyte-derived DNA was found to be enriched in the cell-free DNA
of patients with relapsing MS [194]. Additionally, demethylated MOG cfDNA could
serve as a biomarker of oligodendrocyte death and was found higher in active disease
compared to those with inactive and healthy controls. So, the identification of specific
methylation patterns in the peripheral blood of cells critically involved in brain pathology
could represent a promising tool for the diagnosis and monitoring of neuroinflammatory
diseases.

Perturbations in the methylation status of various genes extend beyond AD. A dif-
ferentially methylated region located in the promoter–enhancer region of the rhomboid 5
homolog 2 (RHBDF2) gene was identified in ALS patients in cfDNA in the plasma [195].
Overall, cfDNA levels were recently found increased in ALS patients. Caggiano et al. [196]
used CelFiE in the cfDNA samples and found expanded skeletal muscle-derived DNA in
patients with ALS. Nevertheless, studies on CSF are lacking and it is currently unknown
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their correlation with disease progression or severity or with genetic variants of the dis-
ease. Collectively, the utility of CSF methylome deconvolution in studying human tissue
dynamics in neurological disorders adds insights beyond the use of cfDNA as a biomarker
but points to its role as a hallmark of the underlining pathology. While these methylation
marks may be a biomarker of disease regardless of their origin, the use of brain-derived
cfDNA to identify new epigenetic biomarkers is relevant because these marks may reflect
more accurately the molecular and epigenetic changes that are occurring in the damaged
brain tissue.

The release of DNA of mitochondrial origin (cf-mtDNA) in the CSF has been studied
more extensively than cfDNA. mtDNA that have been misplaced into the cytosol or released
into the bloodstream holds inflammatory properties as it could serve as damage-associated
molecular patterns activating cytosolic receptors and TLRs [197]. Again, in the settings of
MS, assessment of cf-mtDNA has resulted in opposite results. Reduced cf-mtDNA was
found in progressive MS and is considered a hallmark of broader neurodegeneration [198].
On the other hand, increased cf-mtDNA, measured with digital droplet PCR in CSF, was
found in patients with progressive MS compared to non-inflammatory neurologic disease
controls. Importantly, higher T2 lesion volumes and lower normalized brain volumes were
associated with increased concentration of mtDNA. Moreover, cf-mtDNA was amenable
to therapeutic intervention as patients treated with fingolimod had significantly lower
mtDNA copy levels at follow-up [199].

Studies assessing the application of cf-mtDNA as a reliable biomarker in AD have re-
vealed contradictory results. For example, reports of a significant decrease in CSF cf-mtDNA
levels in AD patients have not been replicated or even resulted in opposite results [200].
One group, by applying droplet digital polymerase chain reaction in CSF specimens, de-
scribed significantly higher CSF mtDNA copies/µL compared to neurologically healthy
controls, but not with a very good discriminative capability (in the receiver-operating
characteristic analysis, area under the curve of 0.715 for distinguishing AD patients from
controls). In other neurodegenerative diseases and specifically in Parkinson’s disease,
cf-mtDNA was found significantly decreased in the CSF of patients and the reduction
was associated with the type and time length of treatment [201]. Nevertheless, it was
affected by comorbidities, a notion that limits its use as a disease-specific biomarker [202].
Molecular biomarkers identified in liquid biopsies from patients with neurodegenerative
and autoimmune inflammatory disorders affecting CNS are presented in Table 3.
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Table 3. CSF-based biomarkers tracking protein pathologies and novel molecular biomarkers.

Protein Metabolism/Aggregation

Biomarker Specific Biological
Process Neurodegenerative Diseases Neuroinflammatory

Diseases
Methodology (Most

Used)

a-synuclein a-Syn pathology AD, PD, CBD, MSA, DLB Not applicable ELISA, RT-QuIC, PMCA
TDP-43 TDP-43 metabolism ALS, FTD Not applicable ELISA

Progranulin Glial activation inhibitor AD, FTD MS ELISA

Molecular biomarkers

miRNA
Various molecular

targets implicated in
molecular networks

AD (miR-27a-3p miR-101 miR-29a,
miR-29b, miR- 34a, miR-125b,

miR-29c-3p, miR15a-5p, let-7i-5p,
miR-146a)

PD (miR-7-5p, miR-331-5p,
miR-145-5p),

MSA (miR-9-3p and miR-106b-5p),
PSP (miR-106b-5p), ALS

(miR-338-3P)

MS (miR-181c; miR-150;
miR-328; miR-34c-5p;

miR-142-3p;
miR-let-7b-5p and
miR-15a-3p/124-

5p/149-3p/29c-3p/
33a-3p/34c-5p/297)

RT-qPCR, NGS

Cell-free DNA and
mitochondrial DNA Cell death AD, PD MS

RT-qPCR, ddPCR,
fluorometric analysis,

sequencing for
mutations, methylation

sequencing (qMSP)

Abbreviations: TDP-43: TAR DNA-binding protein 43, FTD: frontotemporal dementia; AD: Alzheimer’s disease;
PD: Parkinson’s disease, VaD: vascular dementia, CJD: Creutzfeldt–Jakob disease, PSP: progressive supranuclear
palsy, MSA: multiple system atrophy, CBD: corticobasal degeneration, DLB: dementia with Lewy bodies, ALS:
amyotrophic lateral sclerosis, MS: multiple sclerosis, SPMS: secondary progressive multiple sclerosis, RRMS:
relapsing-remitting multiple sclerosis, CIS: clinically isolated syndrome, miRNA: micro-RNA, qMSP: quantita-
tive methylation-specific PCR, RT-qPCR: reverse transcriptase quantitative polymerase chain reaction, ddPCR:
droplet digital polymerase chain reaction, NGS; next-generation sequencing, PMCA; protein misfolding cyclic
amplification, RT-QuIC; real-time quaking-induced conversion.

7. Future Directions

The most critical step for future biomarkers discoveries is understanding disease-
related pathogenetic mechanisms and unraveling the disturbed architecture of the tissue,
cells, and the corresponding implicated biological pathways. An overall picture of the
localization and distribution of all novel biomarkers in CNS, presented in this review, is
illustrated in Figure 1.

Established and novel biomarker for use in clinical practice for diagnosis, prognosis,
and monitoring disease evolution, especially in the era of new drug discovery imposes the
need for sensitive and accurate analytical methods producing homogeneous quantification
results, such as those produced on fully automated laboratory instruments.

Standardization among platforms, improvement of coefficients of variation, and the
use of internal and external quality control programs are necessary both in clinical and
research settings.

Recent advances in methodologies have brought novel research tools, such as ultrasen-
sitive immune-based technologies, such as SiMoA, capable of quantifying proteins at very
low concentrations, and mass spectrometry-based proteomics both bearing promises for
the discovery of new CSF biomarkers, tracking neuroinflammation and neurodegeneration
aspects. In addition, novel “seeding” assays are under development, which could be
used for amplification and capture of the abnormally aggregated misfolded proteins with
prion-like properties, hallmarks of neurodegenerative diseases.

Finally, novel molecular biomarkers are to be recognized with molecular techniques
such as new-generation RNA sequencing, found at both cell-free and cell-rich compart-
ments of CSF. Future delegate CSF DNA studies of methylation analysis or whole sequenc-
ing analysis will pave the way for new molecular and genetic/epigenetic markers to be
identified thus, expanding the discovery of biomarkers to the nucleome.
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8. Conclusions

After more than a century following the introduction of lumbar puncture in medical
practice, CSF laboratory analysis has never stopped being used as a powerful diagnostic
tool mainly for infectious and autoimmune/demyelinating diseases of the CNS. The intro-
duction of biomarkers for neurodegeneration in recent years marks another milestone in
CSF diagnostics. Nowadays, there is an urgent need to open the field of biomarkers research
beyond those already established. Under this perspective, we have tried to provide new
evidence on novel biomarkers either for autoimmune inflammatory or neurodegenerative
disorders.

Studies have shown that single biomarker measurements are not able to capture dis-
ease pathobiology as a whole, while many biomarkers are not disease-specific but common
in both neurodegenerative and neuroinflammatory diseases. Thus, future biomarker com-
bination approach(es) (in the best possible scheme) integrating both old and new ones
would permit proper identification of disease-specific mechanisms and contribute to a more
precise diagnosis and subsequent treatment, while facilitating the enrollment of biologically
homogeneous cohorts of patients in clinical trials.
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Abbreviations
Abs autoantibodies
AD Alzheimer’s disease
ALS amyotrophic lateral sclerosis
APP Amyloid precurcor protein
AQP4 aquaporin-4
α-Syn alpha-synuclein
BACE1 Beta-secretase 1, also known as beta-site amyloid precursor protein cleaving enzyme 1
BBB blood–brain barrier
bvFTD behavioral variant of FTD
CBD corticobasal degeneration
cfDNA cell-free DNA
cf-mtDNA mitochondrial cell-free DNA
CHMP2B charged multivesicular body protein 2B
CIS clinically isolated syndrome
CJD Creutzfeldt–Jacob disease
CSF cerebrospinal fluid
CXCL13 chemokine (C-X-C motif) ligand 13
ddPCR droplet digital polymerase chain reaction
DLB Lewy bodies
DMT disease-modifying therapies
EDSS Expanded Disability Status Scale
ELISA enzyme-linked immunosorbent assay
FDG-PET fluorodeoxyglucose PET
FLC free light chains
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FTD frontotemporal dementia
FTLDs frontotemporal lobar degenerations
FTLD-U ubiquitin-positive frontotemporal lobar degeneration
FUS fused in sarcoma protein
GAP-43 growth-associated protein 43
GFAP glial fibrillary acidic protein
GRNL granulin
IL-13 interleukin-13
IL-17 interleukin-17
IL-5 interleukin-5
IL-6 interleukin-6
IL-8 interleukin-8
KFLC kappa free light chain
KCSF kappa free light chain of cerebrospinal fluid
LFLC lambda free light chain
MCI mild cognitive impairment
MCP-1 monocyte chemoattractant protein-1
miRNAs microRNAs
MOGAD myelin oligodendrocyte glycoprotein antibody disease
MRI magnetic resonance imaging
MS multiple sclerosis
MSA multiple system atrophy
NAWM normal-appearing white matter
NDDs neurodegenerative diseases
NF neurofilaments
NFH heavy neurofilament chains
NFL neurofilament light protein
Ng neurogranin
NGS next-generation sequencing
NIDs neuroinflammatory diseases
NMOSD NMO spectrum disorders
NMO neuromyelitis optica
OBs oligoclonal bands
PD Parkinson’s disease
PDD PD dementia
PET emission tomography
PGRN progranulin
PMCA protein-misfolding cyclic amplification
PPA primary progressive aphasia
PSP progressive supranuclear palsy
p-tau phospho-tau protein
qMSP quantitative methylation-specific PCR
qRT-PCR real-time quantitative PCR
RIS radiologically isolated syndrome
RRMS relapsing-remitting MS
RT-QuIC real-time quaking-induced conversion
SAAs seed amplification assays
sCD163 soluble cluster of differentiation 163
SiMoA single molecule array
SNAP-25 synaptosomal associated protein 25
SPMS secondary progressive MS
sTREM2 soluble TREM2
svFTD semantic variant of FTD
TDP-43 TAR DNA-binding protein of 43 kDa
TGF-β transforming growth factor beta
Th17 T helper 17 cells
Th2 T helper 2 cells
TREM2 triggering receptor expressed on myeloid cells 2
t-tau total tau
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UCH-L ubiquitin C-terminal hydrolase L1
UPS ubiquitin proteasome system
VaD vascular dementia
VILIP-1 visinin-like protein 1
YKL-40 also known as chitinase-3-like protein 1 (CHI3L1), a 40 kD chitin binding protein

with a YKL domain
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